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ON e-REPRESENTATIONS 

BY 

D. K A Z H D A N  

ABSTRACT 

For certain classes of groups we show that a map to the group of unitary 
t ransformations of a Hilbert  space which is "a lmos t"  a homomorph i sm is 
uniformly close to a unitary representation.  

V. Milman asked me the following question: Let p:O(n)---~ O(N) be a map 

which is "almost" a representation, that is, I P(gg')- P(g)P(g')[ is small for all 

g,g'~ O(N). Is it true that p is near to an actual representation of O(n)? This 

paper is a particular answer to this question. 

I want to express my gratitude to H. Furstenberg and B. Weiss for their very 

helpful discussions, and especially to V. Milman for bringing my attention to this 

problem. 

After this paper was written it was called to the author's attention that by 
similar methods the result of Theorem 1 for compact groups was obtained in [1]. 

Let U be a topological group and d be a right invariant metric on U which 

defines the topology of U. Let G be another topological group, R be a 

continuous map O : G--* U and e > 0 be a real number. We say that p is an 

e-h6momorphism if d(p(gg'), p(g)p(g'))_--- e/2 for any g, g ' E  G. Of course, for 

any homomorphism ~ ' :G--*  U and a continuous map p:G ~ U such that 

d(p(g), ~r(g))<= e/4, p is an e-homomorphism. The following question arises 

naturally: when is an e-homomorphism p a small perturbation of a homomorph- 

ism it? 

We start with an example. Let U be the additive group Z2 of integral dyadic 

numbers and d(u,u')=lu-u'l where J l is the usual norm on Z~. 
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PROPOSITION 1. For any e > 0 there exists a finite group G and an e- 

homomorphism p : G --> U such that for any homomorphism 7r : G ---> U we have 

m a x ~  d(p(g) ,  7r(g)) = 1. 

PROOF. Take an integer n such that 1In 2 < e, take G = Z/2"+1Z and define 

the map p : G - - >  U by p ( g ) =  ~ where ~ E Z C Z2 is the representative of g 

such that 0 <_-g < 2 "+1. It is clear that p is an e-homomorphism. 

On the other hand U does not have any torsion. Therefore, the only 

homomorphism ~r : G --> U is 7r -= 0. The proposition is proved. 

We restrict ourselves to some special special class of groups U with a metric to 

get some positive results. 

Let V be a Banach space. We denote by L ( V )  the ring of bounded linear 

operators on V and by U ( V )  (or simply U) the group of isometries. L (V)  has a 

natural structure of a Banach space and U ( V )  acts on L ( V )  by conjugation 

A d ( u ) ( A ) =  u-~Au for u E U, A E L ( V ) .  We denote by Jl 1[ the norms on V 

and on L ( V )  and define 

dtu, u') "~ Ilu -u ' l l  for u, u' E U ( V ) .  

We will study e-morphisms G--9 U(V) which we call e-representations. 

Let G be a topological group, and p : G ~ U be an e-representation. 

We denote by C~ the Banach space of continuous bounded functions 
c : G k __, V with the norm 

Icl = sup IIc(g, , '" ,g~)l l .  
gl,'",gk~G 

We denote by do k : Cok---~ C~ § the linear map given by 

( d ~ c ) ( g .  �9 �9  g~+,) = p(g , )c (g2 , . . . ,  gk+,) + ~ ( -- 1)'C(gl,'" ", g~g~+z,'" ", gk+~) 
i ~ l  

It is clear that 

+ (-1)k+~c(gl, "" ", gk). 

Ildo~+lo dkJJ < 

We say that an e-representation p is e-acyclic if for any c E C~ there exists 

b E C~ -1 such that Ilbll----IIc II and I l d y ' b -  c II----~llcll+lld~cll. 
Let B, be the Banach space of bounded continuous functions f : G ~ V with 

the norm Ilfll sups~G Ilf(g)ll. 
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We denote by r :G--~  U(Bp) the action of G on Bp b y  right shifts and by 

i: V ~  Bp the imbedding given by i ( v ) ( g ) =  p(g)v, v E V, g E G. We say that a 

linear m a p I ' B p  ~ V is an e-mean if IlIII = 1 , / o i  = Id and I I / ~  
e for a n y g E G .  

LEMMA 1. If  there exists an e-mean I on Bp then p is e-acyclic. 

PROOF. Let Ik : C~-~ C~ -~ be a linear map given by 

( I k c ) ( g , "  ", gk-L) %' I(c(g, gl," " ", gk ~)) 

where we consider c(g, g~, . . . ,  gk-~) as a V-valued function on G. Then 

(d~-~olk + Ik+~~ ' '  " ,gk) -c(g~, . "  ",gk) 

= (p(gOo I) (c  (g, g ~ , . . . ,  g~)) 

k - I  

+ ~, ( -  1) ' I(c(g,g, , . . . ,g ,g,+, , . .  ",gk)) 
i = 1  

+ ( - 1)kI(c (g, g~,'" ", gk-,)) + I ( p ( g ) c ( g , . . . ,  gk)) - I(c(gg~, g2,'" ", gk)) 

+ ~ ( - 1)'I(c (g , . . . ,  g,_~g,,..., gk)) + ( - 1)k+~I(c(g, g~,'" ", gk-l)) 
i = 2  

- c ( g , , ' "  ", gk) 

= (p(g0 o I)c(g, g2,'" ", g k ) -  I(c(gg~, g2,'" ", gk)) + I (p (g)c (g~ ,"  ", gk)) 

- c ( g ~ , "  ", g~)  

= (p(gOo I - I o r(gO)(c(g, g2,'" ", gk)). 

Therefore JFd~-' o I~ (c) + L+,o d~(c) - c II <= e II c II. 

Now define b = Ikc. Then 

II b II =< IIc II and II k-~ d~ b-cll<=ellcll+lld~cll. 

The lemma is proved. 

L E n A  2. If  an e-representation p satisfies one of the following conditions: 
(a) G is compact, 

(b) G is an amenable group and V is a reflexive space, 

(c) G is an amenable group, V is the Banach space of bounded operators in a 

Hilbert space H and p = Ado ~ for an e-representation ~ of G on 14, 

then there exists an e-mean on Bp. 
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PROOF. (a) We define (If) =a"fop(g)-' f(g)dg where dg is the Haar measure 

on G such that f~ dg = 1. It is clear that Ilzll = 1 and I o i = Id. Therefore, we 

only have to check that I I p ( g ) o I - i o  r(g)ll ==-e for any g E G. But 

Therefore 

(Ior(g)) f= fa p- '(g')f(g'g)dg'= f6 p-'(g'g-')f(g')dg'. 

lip(g), i f  - Io r(g)fll <= max t[P(g)(g'-') - p-,(g,g-1) for any f ~ Bp. 
g, gEG 

Since p is an e-representation, we have liP(g)~ I -  Io r(g)l I <= e. 
(b) Since G is an amenable group, there exists a continuous G-invariant 

linear functional m on L~(G) such that re(l)  = 1 and lira H-- 1. For any f E Bp 

we define I ( f )  as an element in the double dual of V by I(f)(A)=d~ (g)) 

where a,(g)=d~z(p(g)-'f(g)). Since V is a reflexive Banach space, we can 

consider I as a map from Bp to V. Then 

Hill = max III(f)[l= max IA(I(f)) I. 
f EBp,IJII~= 1 f~B~llf[l= 1 

~ E v ,  lrx lr= l 

But IX (Iff))l  = I m (a~ (g))l --< sups~o l a~ (g)l --< II A I1" II f(g)ll--< II • Jl" I1[ II. Therefore 
H III_-<I. It is clear that I oi = I d  and the proof of the inequality 

I Ip(g) I - I~  <= e is completely analogous to the one in (a). 

(c) For any f ~ B p  we first define a bilinear form [(f )  on H by 

i(f)(h~,h2) %f m(an,.~(g))where an,.~(g) ~ (f(g)~(g)-~h~,~(g)-~h2). It is clear 

that Ilff)(h,,h2)l<-_ll/ll.llh, ll.llh2ll for any hx, hzEH.  Therefore, our bilinear 

form /~(f) defines a bounded linear operator I ( f )  on H and IlI(f)ll--< IlYll. It is 
now easy to check that I : Bp ~ V is an e-mean. Lemma 2 is proved. 

THEOREM 1. Let G be an amenable group and [J : G--~ U be an e- 
representation of G into the group U of unitary transformations of a Hilbert 
space H for e < 1/100. Then there exists a representation 7r : G ~ U such that 
IIt3(g)- r =< e for all g E G. 

We start with the following result. 

PROPOSITION 2. Suppose that f~ satisfies the conditions of the theorem. Then 
there exists an e~-representation ~ : G ~ U for e~ = 5e 2 such that 
lit3 ( g ) -  ~,(g)ll--< e/2 + e ~. 

PROOF OF THE PROPOSITION. Let V be the space of bounded linear operators 

on H. We denote by p the e-representation of O on V given by p = Ad otS. For 
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any g , g ' E G  we define W(g,g')E U by /5(g)t~(g') = W(g,g')/5(gg'). 
assumption IIw(g,g')-~dll<-e/2. We now compute  the triple 
t~ (gl)t5 (g2)t5 (g3) in two ways. 

319 

By the 
product  

~(g,)~(g2)/5(g3) = W(gl, g2)/5(glg2)/5(g3) = W(g,, g2) W(g,g2, gs)~(g,g2g3). 

On the other hand 

t5 (g,)/~ (g2)/5 (g3) =/5 (gl) W(g2, g3)/5 (g2gs) 

= P (g,) (W(g2, g3))/5 (g,)~ (g2g3) 

= p(ga)(W(g2, g3))W(g,, g2g3)~(g,g2g3). 
Therefore 

(*) W(gl, g2) W(glg2, g3) = p (gl)(W(g2, g3)) W(g,g~g3). 

For any u ~ U such that II u - Idll < 1 w e  define 

lnu  %f ~ ( - 1 ) , - 1 ~  . 
i = l  l 

LEUMA 3. Let u , u ' ~ U  be such that I l u - Id l l ,  Ilu'-Xdll--<~/2. Then 
Illn(uu')- (In u + In u 311--< ~2/2 for e < 1/lOO. 

PROOF. Clear. 
We define an element  a in C 2 by a(g,g')=lnW(g,g') .  It is clear that 

I1,, I I-  ~/2 + ~2/2. It follows from (*) and Lemma 3 that II dg~ II---- ~ 2. Therefore by 
Lemma 2(c) there exists b E C 1 such that II b II --< ~/2 + ~2/2 and II d~b - ~ II --< 2~ .  
It is easy to see that a(g,g') and b(g) are skew Hermitian operators. 

We now define the map t51 : G ~ U by t51(g) = exp(b(g))p(g). It is clear that 

II~(g)-  ~,(g)ll--- ~/2 + ~2 for any g ~ G and 

~,(gg')-'~,(g)~,(g') 

=/5 (gg')-' exp ( - b (gg')) exp b (g)/5 (g) exp b (g')t5 (g') 

=/5 (g,)-1/5 (g)-, W(g, g') exp ( - b (gg')) exp b (g) exp (t5 (g)b (g'))/5 (g)/5 (g'). 

Therefore 

1[ f~,(gg') -/5,(g)~,(g')[[ 

= II p l (gg ' ) - lp , (g) /5~(g ') - Idl[ 

= [[ exp (a (g, g')) exp ( - b (gg') exp (b (g)) exp (p (g)b (g'))) - Id II 

= [I exp (a (g, g') - b (gg ') + b (g) + p (g)b (g ')) - Id + 6 [[ 
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where II ~ II ~ 3e 2. So II t~l(g)t~,(g')ll ~ 5e 2 for all g, g'  ~ G. Proposition 2 

is proved. 

We now can prove Theorem 1, Let  t5 : G ~ U be an e-representat ion of an 

amenable group G. Let e.,  n =>0 be a sequence defined by e0 = e, e, = 5e 2 n - l ,  

We inductively define e,-representations/5,  of G by successive applications of 

Proposition 2. It is clear that e. =<e/3" and that I[~.(g)-~._,(g)ll<=e/3" for 

n > 1 and any g E G. Therefore  the sequence iS, (g) E U is convergent for any 

g ~ G. Define 

rr (g) d"d lim iS, (g). 

It is clear that 7r : G ~ U is a representation of G and 

I l l - (g)-  ~(g)ll_- < ~ Ilt~. ( g ) -  t~._,(g)ll_- < e. 
n = l  

Theorem 1 is proved. 

Let  X be a Riemannian surface of genus 2 and F be the fundamental group of 

X. We will show that for any e > 0  there exists a finite-dimensional e-  

representation/5 : F ~ U ( N )  such that for any representation 7r : F ~ U ( N )  we 

have sup, FrillS(g)- ~r(g)ll > 1/10. 
We start with the following observation. Fix any integer N and denote by 

D C  U ( N )  the set of u E U  such that Ilu-Idll<l, and denote by q~ the 

continuous function on D given by 

Define D '  = D n SU(N) .  

~ o ( u )  do, 1 
= ~-~ Tr In u. 

LEMMA 4. ~ p ( u ' ) E Z  for any u ' E D ' .  

PROOF. As is well known exp(27ri~(u))= det u for any u E D. Therefore  

exp(2zri~(u')) = 1 for any u ' E  D'.  The lemma is proved. 

' -  ' D _ ' = D  . . . .  COROLLARY. Define Do - q~-l(O) C D ,  Do. Then Do and D_ ' are 

open and closed subsets of D' .  

REMARK. It is easy to see that D ~ is the connected component  of Id in D ' .  

Let  u, v be the elements of U ( N )  and w = uvu-lv  -1. 

LEMMA 5. I f  [I w - Id u < 1/5 and w E D_ ' then for any u', v' E U ( N )  such that 

II u - u 11, II v - v '11 < 1/5, u'v' ~ v 'u '. 
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PROOF. Define u(t), v ( t ) E  U, 0<=t =< 1 by 

u(t) de' = u exp(t ln(u-lu')), V( t )  = v exp(t In(v-Iv')). 

It is clear that u(t),  v( t )  are continuous maps from [0, 1] to U(N) ,  u(O)= u, 

u ( 1 ) = u ' ,  v (0 )=v ,  v ( 1 ) = v '  and Ilu(t)-ull, IIv(t)-vll<l/5 for 0<=t<=l. 
Define w(t )  = u( t )v ( t )u ( t ) -~v( t )  -1. It is clear that w(t )  is a continuous map from 

[0, 1] to D' .  Since w(0) = w E D '  we have w(1) = u 'v 'u ' - l v  '-~ E D_'. The lemma 

is proved. 

We will need a slight generalization of this result. Let u~, 1 _-< i =< 4 be elements 

of U ( N )  and w ~-ulu2UllU21U3U4U31U41. Assume that IIw-Id[l<l/10 and 

w E D ' .  

LEMMA 5'. Forany u'iE U(N) ,  1 =< i <=4 such that Ilu, - u',[I < 1/10, 1 < i =<4 
we have , , ,-1 ,-1 , , ,-1 ,-1 UlU2Ul U2 U3U4U3 U4 ~ I d .  

PROOF. The same. 

Now consider our group F. It can be realised as a torsion-free co-compact 

subgroup of SL(2, R).  Let S be the upper half plane which we consider as a 

Lobachevsky plane. SL(2, R)  naturally acts on S and F is the fundamental group 

of X = F\  S. Let to ~ IY(S) be the SL(2, R)-invariant differential form on S such 

that f x  to = 1. As to is F-invariant we can consider it as a two-form on X. Then to 

represents a generator a of H2(X, R) .  By standard arguments we can identify 

H:(X,  R )  with H2(F, R).  Fix so E S and for any g, g ' ~  F we denote by c (g, g') 

the oriented area of the triangle with vertices (So, gso, g'so) in respect to to. The 

following result is well known. 

LEMMA 6. c(g,g ')  is a 2-co-cycle on F which represents a. 

The cohomology class a E H2(F, R)  corresponds to a central extension of F 

0 ~R > FR --L-> F - - ~  0 

and there exists a map 8:F--->I' ,  such that w o S = I d  and 8(gg ' )= 

c(g ,g ' ) .  8 ( g ) 8 ( g ' ) w h e r e  we identify R with a subgroup in FR. 

Since fx to  = 1 our class a lies in the image of H2(F, Z). Therefore, there 

exists a subgroup f' C I"R such that zr(f') = F and I ~ A R = Z. For any ~ E I~R we 

denote by [~] the unique element in [" such that "~ = a .  [~] where a E R, 

0 <- a < 1. We denote by 8' the map 8' : F--* I" given by 5'(g) = [6 (g)], g ~ F and 

define c'(g, g') by 8'(gg') = c'(g, g ' )5 ' (g)8 '(g ' )  for g, g ' E  F. 
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L E ~ A  7. c ' ( g , g ' ) ~ Z  and Ic'(g,g')[<=3 [or g , g ' ~ F .  

PROOF. The first statement follows from the equality R tq F = Z. To prove 

the second one we observe that the area of any triangle in S is = 1/2 and 

therefore I c(g, g')l--- 1/2. The statement of the lemma now immediately follows 

from the definition of the co-cycle c'. 

TrIEOREM 2. For any e > 0 there exists a finite dimensional e-representation 
: F ~ U(N)  such that [or any representation 7r : F ~ U(N)  one has 

sup II~(g)- ~r(g)l[ ~ 1/10. 
g ~ F  

PROOf. As is well known F is a group generated by four generators 3'1, 3'2, 3'3, 

3'4 and one relation ~/~3"23'7~3'~3'33'43'313'~ 1= e. The central extension F is 

generated by five generators </1, 72, 3,3, 3'4, 0 and relations </~0 = 0</~, 1 _--- i _-<4 

and 0 = </~</2</1~</~</3</4</~1</~ ~. The projection 1r : f'---> F maps </~ to 3', 1 =< i =< 4 

and I r (0)=  e. V/e will identify 0 with the generators of the center Z in F. 

Assume that e <1/10 and fix N such that N > 3 / e .  Let 7/=exp(27ri /N),  

A C U(N)  be the diagonal matrix with elements akk = r~ ~, 1 = k =< N and 

B = (b~)C U(N)  be the matrix given by 

b,~ ={10 i f i - j = l ( m o d N ) ,  

otherwise. 

It is clear that A B A - ~ B  -~ = , / Id .  Let o. : F---> U(N)  be the representation given 

on generators by o-(~) = A, o'(~2) = B, o.(~3) = o'(</4) = Id, o'(O) = ~/Id. 

It is clear that all relations are satisfied and therefore the representation 

o" :F---> U(N)  is well defined. We now define the map t~ :F---> U(N)  by 

t~ = o ' ~  Then 

~(gg') = o'(8'(gg')) = o.(OC"8'g')8'(g) �9 8'(g')) = n'"s's')~(g):(g'). 

Therefore II:(gg')- P(g)P(g)P(g')l[ = 1~ c's'g') - 1[. Since I c'(g, g')l ~ 3 and N > 

3/e we see that t~ is an e-representation of F. 

Now let ~r :F---> U(N)  be any representation. We apply Lemma 5' to 
u~ =da O.(</,), U~ =def ~.(3',), 1 =< i ----< 4. 

Then w = 71 Id and q~(w) = 1. On the other hand 3'13"23"~13'~3'33',3'~13'41 = e 

'u 'u '-lu ' - lu 'u  'u '-lu ,-1 _ Id. It now follows from Lemma 5' that and therefore u l 2 ~ 2 3 4 3 4 - -  

max,~,~411u,- u;I]----1/10. Theorem 2 is proved. 
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